由于管理部分微分方程的半差异,例如通过有限元方法。这些系统的复杂性提出了直接应用自动控制的计算挑战。虽然模型还原已在控制中看到无处不在的应用,但在这种情况下使用非线性模型还原方法仍然很困难。问题在于在降低的订单模型中保留非线性动力学的结构,以进行高保真控制。在这项工作中,我们利用光谱亚曼佛(SSM)理论的最新进展来使模型在明确的假设下降低,以有效地合成反馈控制器。
translated by 谷歌翻译
在这项工作中,我们分析了一种高效的采样算法,用于通用可达性分析,这仍然是一种令人难度的挑战性问题,其应用范围从神经网络验证到动态系统的安全分析。通过采样输入,评估其在真正可到达的集合中的图像,并将其$ \ epsilon $ -padded凸壳作为集合估计器,该算法适用于一般问题设置,易于实现。我们主要贡献是使用随机集理论的渐近和有限样本精度保证的推导。该分析通知算法设计以获得$ \ epsilon $-close达到的近似值,具有很高的概率,提供了可达性问题最具挑战性的洞察力,并激励了该技术的安全关键应用。在神经网络验证任务上,我们表明这种方法比现有工作更准确,明显更快。我们的分析知情,我们还设计了一种强大的模型预测控制器,我们在硬件实验中展示。
translated by 谷歌翻译
顺序凸编程(SCP)最近已获得了解决最佳控制问题的有效方法,并已成功应用于多个不同的领域。但是,SCP的理论分析受到了相对有限的关注,并且通常仅限于离散时间配方。在本文中,我们介绍了对连续时间最佳控制问题的相当一般类别的SCP程序的统一分析。除了在连续时间环境中保证收敛的推导外,我们的分析还揭示了两个新的数值和实际见解。首先,我们展示了如何更轻松地考虑歧管型约束,这是对机械系统的最佳控制的定义特征。其次,我们展示了如何通过从间接最佳控制中注入技术来利用我们的理论分析来加速基于SCP的最佳控制方法。
translated by 谷歌翻译
In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.
translated by 谷歌翻译
Quantum computing is a promising paradigm based on quantum theory for performing fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degree of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version, still obtaining comparable clustering results.
translated by 谷歌翻译
Warning: this paper contains content that may be offensive or upsetting. In the current context where online platforms have been effectively weaponized in a variety of geo-political events and social issues, Internet memes make fair content moderation at scale even more difficult. Existing work on meme classification and tracking has focused on black-box methods that do not explicitly consider the semantics of the memes or the context of their creation. In this paper, we pursue a modular and explainable architecture for Internet meme understanding. We design and implement multimodal classification methods that perform example- and prototype-based reasoning over training cases, while leveraging both textual and visual SOTA models to represent the individual cases. We study the relevance of our modular and explainable models in detecting harmful memes on two existing tasks: Hate Speech Detection and Misogyny Classification. We compare the performance between example- and prototype-based methods, and between text, vision, and multimodal models, across different categories of harmfulness (e.g., stereotype and objectification). We devise a user-friendly interface that facilitates the comparative analysis of examples retrieved by all of our models for any given meme, informing the community about the strengths and limitations of these explainable methods.
translated by 谷歌翻译
A significant drawback of eXplainable Artificial Intelligence (XAI) approaches is the assumption of feature independence. This paper focuses on integrating causal knowledge in XAI methods to increase trust and help users assess explanations' quality. We propose a novel extension to a widely used local and model-agnostic explainer that explicitly encodes causal relationships in the data generated around the input instance to explain. Extensive experiments show that our method achieves superior performance comparing the initial one for both the fidelity in mimicking the black-box and the stability of the explanations.
translated by 谷歌翻译
Localization of autonomous unmanned aerial vehicles (UAVs) relies heavily on Global Navigation Satellite Systems (GNSS), which are susceptible to interference. Especially in security applications, robust localization algorithms independent of GNSS are needed to provide dependable operations of autonomous UAVs also in interfered conditions. Typical non-GNSS visual localization approaches rely on known starting pose, work only on a small-sized map, or require known flight paths before a mission starts. We consider the problem of localization with no information on initial pose or planned flight path. We propose a solution for global visual localization on a map at scale up to 100 km2, based on matching orthoprojected UAV images to satellite imagery using learned season-invariant descriptors. We show that the method is able to determine heading, latitude and longitude of the UAV at 12.6-18.7 m lateral translation error in as few as 23.2-44.4 updates from an uninformed initialization, also in situations of significant seasonal appearance difference (winter-summer) between the UAV image and the map. We evaluate the characteristics of multiple neural network architectures for generating the descriptors, and likelihood estimation methods that are able to provide fast convergence and low localization error. We also evaluate the operation of the algorithm using real UAV data and evaluate running time on a real-time embedded platform. We believe this is the first work that is able to recover the pose of an UAV at this scale and rate of convergence, while allowing significant seasonal difference between camera observations and map.
translated by 谷歌翻译
In this new computing paradigm, named quantum computing, researchers from all over the world are taking their first steps in designing quantum circuits for image processing, through a difficult process of knowledge transfer. This effort is named Quantum Image Processing, an emerging research field pushed by powerful parallel computing capabilities of quantum computers. This work goes in this direction and proposes the challenging development of a powerful method of image denoising, such as the Total Variation (TV) model, in a quantum environment. The proposed Quantum TV is described and its sub-components are analysed. Despite the natural limitations of the current capabilities of quantum devices, the experimental results show a competitive denoising performance compared to the classical variational TV counterpart.
translated by 谷歌翻译
目标。借助(子)毫米观测值的大量分子发射数据和詹姆斯·韦伯(James Webb)空间望远镜红外光谱,访问原磁盘的化学成分的快进模型至关重要。方法。我们使用了热化学建模代码来生成各种多样的原行星磁盘模型。我们训练了一个最初的邻居(KNN)回归剂,以立即预测其他磁盘模型的化学反应。结果。我们表明,由于所采用的原行业磁盘模型中局部物理条件之间的相关性,可以仅使用一小部分物理条件来准确地重现化学反应。我们讨论此方法的不确定性和局限性。结论。所提出的方法可用于对线排放数据的贝叶斯拟合,以从观测值中检索磁盘属性。我们提出了在其他磁盘化学模型集上再现相同方法的管道。
translated by 谷歌翻译